Item 10.1.8 - Attachment 2 EAQ Consulting

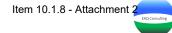
Environment | Air Quality

Environmental & Air Quality Consulting Pty Ltd PO Box 897 JOONDALUP DC WA 6919 +61 (8) 6108 3760 +61 (0) 449 915 043 www.eaqconsulting.au info@eaqconsulting.com.au

31 May 2024

Roxley Penny Group WHSEQ Manager Wormall Group C/-Smartstream Technology 17 Cardup Siding Road Cardup, Western Australia 6122

By email: @wormallcivil.com.au


[EAQ Project Reference: 24016]

Technical Report – Air Quality Impact Assessment of Rotomould Facility (Cardup)

Dear Roxley,

Environmental and Air Quality Consulting Pty Ltd (EAQ) provides this technical report that presents the measured concentrations of airborne pollutants for the Cardup Smartstream Technology Rotomould Facility (the Site) and addresses the risk of adverse impacts of those individual pollutant species on nearby sensitive receptors within the Cardup locale.

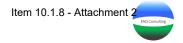
The key pollutant sampling and testing was undertaken by Ektimo. The laboratory results are presented in <u>Appendix A.</u>

Table of Contents

1	Back	ground to Assessment			
2	2 Targeted Airborne Pollutants 4				
3	Resu	ults of Airborne Emissions Sampling and Testing5			
4	Discu	ussion7			
	4.1	Conclusion and Closing	7		
APPENDIX A – EKTIMO LABORATORY RESULTS					

Tables

Table 2-1: Targeted Airborne Pollutants	. 4
Table 3-1: Rotomould Ovens' Sampling Plane Details	. 5
Table 3-2: Concentration Results of Measured Pollutants & Mass Emission Rates	. 5
Table 3-3: Concentration & Mass Emissions of Cumulative Measured Pollutants	. 5
Table 3-4: Concentration & Mass Emissions of Cumulative Measured Pollutants	. 6

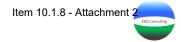

1 Background to Assessment

The Shire of Serpentine-Jarrahdale (SSJ) has requested an updated air emissions report for the Site "in accordance with the draft guideline on air emissions from the Department of Water and Environmental Regulation (DWER). The Air Emission assessment should consider concentrations of air pollutants at source (stack) and/or ground concentrations to compare with the relevant air quality criteria – for example criteria pollutants, principle toxic substances and individual toxic substances".

The Assessment aims to demonstrate to the SSJ that the Site's operations do not impact upon the ambient air quality afforded to the Cardup locality.

The pollutants targeted are those that are most likely to be emitted from the Rotomoulding activities (plastic products) and include those key toxic pollutants prescribed within the current DWER draft <u>guideline</u> on air emissions.

The pollutant sampling and testing was undertaken by Ektimo. The laboratory results are presented in <u>Appendix A.</u>



2 Targeted Airborne Pollutants

Table 2-1 lists the airborne pollutants targeted in the Assessment and their ground level exposure limits at the nearest sensitive receptor (urban).

Pollutant	DWER Exposure Criteria µg/m³ @ 25⁰C
Nitrogen oxides (NOx) as NO ₂	226 (1-hr), 56 (Annual)
Sulphur dioxide (SO ₂)	524 (1-hr), 210 (24-hrs), 52 (Annual)
Carbon monoxide (CO)	30,000 (1-hr), 10,000 (8-hrs)
Total Volatile Organic Compounds (VOCs)	n/a
Formaldehyde	20 (1-hr)
Acetaldehyde	1,830 (24-hrs), 46 (Annual)
Acetone	22,000 (1-hr)
Acrolein	0.42 (1-hr), 0.074 (24-hrs)
Propionaldehyde	1,830 (24-hrs), 46 (Annual)
Valeraldehyde	1,830 (24-hrs), 46 (Annual)
Methyl ethyl ketone (MEK - 2-butanone)	445,000 (8-hr) – Safe Work Australia
n-Butyraldehyde	1,830 (24-hrs), 46 (Annual)
Hexaldehyde	1,830 (24-hrs), 46 (Annual)

* Where individual aldehyde species have no exposure criteria, the criteria for Acetaldehyde has been adopted.

3 Results of Airborne Emissions Sampling and Testing

Parameter	Unit	Stack West	Stack East
Stack diameter	Metres (m)	0.358	0.300
Stack area	Square metres (m ²)	0.101	0.071
Moisture content	% volume/volume	4.1	3.5
Temperature	Degrees Celsius (⁰ C)	194	179
Velocity	Metres per second (m/s)	4.5	15
Volumetric flow rate, actual		27	63
Volumetric flow rate, wet	Cubic metres per minute (m ³ /min)	17	38

Table 3-1: Rotomould Ovens' Sampling Plane Details

Table 3-2: Concentration Results of Measured Pollutants & Mass Emission Rates

Analyte (Chemical Species)	Stack	West	Stack East		
Analyte (Chemical Species)	Conc'n (ou.m ³)	Emission Rate	Conc'n (ou.m ³)	Emission Rate	
Odour	1,400	-	570		
Analyte (Chemical Species)	Conc'n (mg/m ³)	g/s	Conc'n (mg/m ³)	g/s	
Nitrogen oxides (NOx)	49	0.0139	15	0.0095	
Sulphur dioxide (SO ₂)	<u>A</u> < 6	< 0.0017	<u></u> < 6	< 0.0038	
Carbon monoxide (CO)	28	0.0079	6.6	0.0042	
Total VOCs	1.3	0.0004	6.3	0.0040	
Formaldehyde	0.2	0.0001	0.42	0.0003	
Acetaldehyde	0.23	0.0001	0.17	0.0001	
Acetone	2.5	0.000708	4.4	0.0028	
Acrolein	< 0.03	< 0.000009	< 0.04	< 0.000025	
Propionaldehyde	< 0.03	< 0.000009	< 0.04	< 0.000025	
Valeraldehyde	< 0.03	< 0.000009	< 0.04	< 0.000025	
MEK (2-butanone)	< 0.03	< 0.000009	< 0.04	< 0.000025	
n-Butyraldehyde	< 0.03	< 0.000009	< 0.04	< 0.000025	
Hexaldehyde	< 0.03	< 0.000009	< 0.04	< 0.000025	

<u>A</u> " < " refers to a concentration less than the analytical detection limit.

Combining the two stacks, the cumulative results are listed in Table 3-3.

Table 3-3: Concentration & Mass Emissions of Cumulative Measured Pollutants

Analyte (Chemical Species)	Conc'n (ou.m³)	Emission Rate
Odour	1,970	-
Analyte (Chemical Species)	Conc'n (mg/m ³)	g/s
Nitrogen oxides (NOx)	64	0.0234
Sulphur dioxide (SO ₂)	< 12	0.0055
Carbon monoxide (CO)	34.6	0.0121
Total VOCs	7.6	0.0044
Formaldehyde	0.62	0.0003
Acetaldehyde	0.4	0.0002
Acetone	6.9	0.0035
Acrolein	< 0.07	0.000034
Propionaldehyde	< 0.07	0.000034
Valeraldehyde	< 0.07	0.000034
MEK (2-butanone)	< 0.07	0.000034
n-Butyraldehyde	< 0.07	0.000034
Hexaldehyde	< 0.07	0.000034

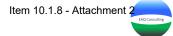


Table 3-4 compares the previous (2022) pollutant mass emission rate results to these 2024 results.

Analyte (Chemical Species)	2022 Measured Value (ou.m ³)	Modelled Ground Level Conc'n (GLC)	% of Criteria	2024 Measured Value (ou.m ³)	% ↑↓ on 2022 Results	Adjusted for % of Criteria
Odour	1,100	0.1911	19%	1,970	79%	34%
Analyte (Chemical Species)	2022 Measured Value (mg/m ³)	Model GLC	% of Criteria	2024 Measured Value (mg/m ³)	% ↑↓ on 2022 Results	Adjusted for % of Criteria
Nitrogen oxides (NOx)	13	1.2376	0.548%	64	392%	2.698%
Sulphur dioxide (SO ₂)	< 6 (modelled as 6)	0.5681	0.108%	(2 x < 6) 12	100%	0.216%
Carbon monoxide (CO)	41	3.8752	0.013%	34.6	-16%	0.011%
Total VOCs	< 0.3	n/a	n/a	7.6	n/a	n/a
Formaldehyde	2.9	0.2840	1.420%	0.62	-79%	0.304%
Acetaldehyde	0.22	0.0203	0.001%	0.4	82%	0.002%
Acetone	2.5	^в 0.2840	0.001%	6.9	176%	0.003%
Acrolein	< 0.007	<	n/a	< 0.07	< n/a	n/a
Propionaldehyde	≤ 0.025	<	n/a	< 0.07	< n/a	n/a
Valeraldehyde	< 0.007	<	n/a	< 0.07	< n/a	n/a
MEK (2-butanone)	< 0.007	<	n/a	< 0.07	< n/a	n/a
n-Butyraldehyde	0.065	^в 0.2840	0.016%	< 0.07	< n/a	n/a
Hexaldehyde	0.021	^в 0.2840	n/a	< 0.07	< n/a	n/a

^B Analyte Modelled against Formaldehyde Concentration.

- The concentrations (g/s) listed in **Table 3-4** show that the 2024 mass emission rates for all chemical species are very low; and
- The emission rates listed in **Table 3-4**, when compared and subsequently adjusted against the most recent 2022 modelled ground level concentrations (**column 7**) shows that ground level concentrations of these key pollutants do not exceed regulatory guidelines.

Some pollutant emission rates have increased in 2024 compared to the 2022 results, however; these increases are not material. Equally, some emission rates have decreased (**Table 3-4, column 6**).

Analytes measured and found to be below the detection limits of the laboratory (<) shows that these pollutants are of a very low risk and/or negligible risk in terms of ground level pollutant impacts.

Odour impacts are evaluated based on odour field assessment (OFA) techniques, not dispersion modelling; where the OFAs have been undertaken and reported by Ektimo and therefore not represented or discussed herein.

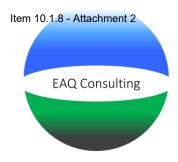
4 Discussion

The site-specific sampling and testing of airborne pollutants by Ektimo have provided emission parameters and analtye concentrations for criteria, principal and individual toxic substances, and for measured odour concentration, from the Rotomould emission stacks. Importantly, the measured emission temperatures are high which will provide large thermal buoyancy of the plume and thus aid in dispersion of the plume before the plume touches back to ground level.

The measured chemical species all had low concentrations with some analytes having negligible concentrations which were not detectable at, or above the laboratory lower detection limit.

4.1 Conclusion and Closing

The Assessment of Smartstream's Rotomoulding process at their Cardup Site, by site-specific odour and chemical sampling and testing of the stacks' emission streams, has shown that the measured concentrations of airborne pollutants from the Rotomoulding process are very low and hence the risk of an adverse impact at the nearest sensitive receptor is also low.


Based on the Assessment findings, the emission plume from Smartstream's Rotomoulding process poses a negligible risk for causing adverse impacts at the nearest sensitive receptor.

Closing

Should you have any queries on the detail and technical points herein please don't hesitate to contact EAQ as required.

Yours sincerely,

John Hurley B.Sc Chemistry/Biotechnology | CAQP (CASANZ) Director | Principal Air Quality Consultant jhurley@eaqconsulting.com.au

APPENDIX A – EKTIMO LABORATORY RESULTS

Smartstream Technology Stack Emission Testing 2024

Report R017025

ektimo.com.au

Accredited for compliance with ISO/IEC 17025 - Testing. NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the Ordinaryeqaivaeins:ടെting,calibaeടിമെറ്റമർ inspection reports.

Document Information

Client Name:	Smartstream Technology
Report Number:	R017025
Date of Issue:	22 May 2024
Attention:	Roxley Penney
Address:	17 Cardup Siding Road Cardup WA 6123
Testing Laboratory:	Ektimo Pty Ltd, ABN 86 600 381 413

Report Authorisation

Brock Zimoch Air Monitoring Consultant NATA Accredited Laboratory No. 14601 Tom Manton Ektimo Signatory

This document is confidential and is prepared for the exclusive use of Wormall and those granted permission by Wormall. The report shall not be reproduced except in full.

Please note that only numerical results pertaining to measurements conducted directly by Ektimo are covered by Ektimo terms of NATA accreditation as described in the Test Methods table. This does not include calculations that use data supplied by third-parties, comments, conclusions, or recommendations based upon the results. Refer to Test Methods section for full details of testing covered by NATA accreditation.

Table of Contents

1	E	xecutive Summary	4
	1.1 1.2	Background Project Objective & Overview	4
2	F	Results	
	2.1	Roto Moulding Oven Exhaust Stack (West)	5
	2.2	Roto Moulding Oven Exhaust Stack (East)	7
3	5	ample Plane Compliance	
	3.1	Roto Moulding Oven Exhaust Stack (West)	9
	3.2	Roto Moulding Oven Exhaust Stack (East)	9
4	F	Plant Operating Conditions	9
5	٦	est Methods	. 10
6	(Quality Assurance/Quality Control Information	. 10
7	[Definitions	. 11

1 Executive Summary

1.1 Background

Ektimo was engaged by Smartstream Technology to perform emission testing at their Cardup plant.

Monitoring was performed during peak production.

1.2 Project Objective & Overview

The objective of the project was to quantify emissions from two discharge points.

Monitoring was performed as follows:

Location	Test Date	Test Parameters*		
Roto Moulding Oven Exhaust Stack (West)	1 May 2024	Volatile organic compounds (VOCs) Aldehydes and ketones		
Roto Moulding Oven Exhaust Stack (East)	2 May 2024	Odour Nitrogen oxides, sulfur dioxide, carbon monoxide, carbon dioxide & oxygen		

* Flow rate, velocity, temperature, and moisture were also determined.

All results are reported on a dry basis at STP (except odour wet – STP).

Plant operating conditions have been noted in this report.

2 Results

2.1 Roto Moulding Oven Exhaust Stack (West)

Date	1/05/2024		Client	Smartstream Technology	
Report	R017025		Stack ID	Roto Moulding Oven Stack West	
Licence No.			Location	Cardup	
Ektimo Staff	Brock Zimoch, Tim Blankley		State	WA	
Process Conditions	Please refer to client records.			24	40424
Stack Parameters					
Moisture content, %v	//v	4.1			
Gas molecular weigh	nt, g/g mole	28.8 (wet)		29.3 (dry)	
Gas density at STP, k	g/m³	1.29 (wet)		1.31 (dry)	
Gas density at discha	arge conditions, kg/m ³	0.82			
Gas Flow Parameters	5				
Temperature, °C		194			
Velocity at sampling	plane, m/s	4.5			
Volumetric flow rate,	, actual, m³/min	27			
Volumetric flow rate	(wet STP), m³/min	17			
Volumetric flow rate	(dry STP), m³/min	17			
Mass flow rate (wet	basis), kg/h	1300			

Gas Analyser Results	Average
Sampling time	1109 - 1142
Combustion Gases	Concentration Mass Rate mg/m³ g/min
Nitrogen oxides (as NO2)	49 0.81
Sulfur dioxide	<6 <0.09
Carbon monoxide	28 0.46
	Concentration %v/v
Carbon dioxide	3.6
Oxygen	14.5

Aldehydes	Aver	Average		Test 1		t 2
Sampling tim	e		1109-	1124	1125-:	1140
	Concentration mg/m³	Mass Rate g/min	Concentration mg/m ³	Mass Rate g/min	Concentration mg/m ³	Mass Rate g/min
Formaldehyde	0.2	0.0033	0.079	0.0013	0.31	0.0052
Acetaldehyde	0.23	0.0038	0.13	0.0021	0.33	0.0056
Acetone	2.5	0.042	2	0.034	3	0.051
Acrolein	<0.03	<0.0005	<0.03	<0.0005	<0.03	<0.0005
Propionaldehyde	< 0.03	<0.0005	<0.03	<0.0005	<0.03	<0.0005
2-Butanone (MEK)	< 0.03	<0.0005	< 0.03	<0.0005	<0.03	<0.0005
Butrylaldehyde	<0.03	<0.0005	<0.03	<0.0005	<0.03	<0.0005
Valeraldehyde	< 0.03	<0.0005	< 0.03	<0.0005	<0.03	<0.0005
Hexaldehyde	<0.03	<0.0005	<0.03	<0.0005	<0.03	<0.0005

Date	1/05/2024		Client	Smartstream	Technology
Report	R017025		Stack ID	Roto Mouldir	ng Oven Stack West
Licence No.			Location	Cardup	
Ektimo Staff	Brock Zimoch, Tim Bla	inkley	State	WA	
Process Conditions	Please refer to client	records.			240424
Odour		Average		Test 1	Test 2
	Samplingtime		11	11-1116	1125 - 1130

Sampling time			1111 -	1116	1125 -	1130
		Odourant		Odourant		Odourant
	Concentration ou	Flow Rate ou.m³/min	Concentration ou	Flow Rate ou.m³/min	Concentration ou	Flow Rate ou.m³/min
Results	1400	25000	1400	25000	1400	25000
Lower uncertainty limit	1100		1100		1000	
Upper uncertainty limit	1800		1900		1900	
Analysis date & time			02/05/24,0	900-0930	02/05/24,0	900-0930
Holding time			22 hc	urs	22 hc	urs
Dilution factor			1		1	
Bagmaterial			Nalop	han	Nalop	han
Butanol threshold (ppb)	44	Ļ				
Laboratory temp (°C)	23	5				
Last calibration date	March	2024				

Total Speciated VOCs	Avera	age	Test		Test	
Sampling time			1109-1	1124	1125-1	140
	Concentration mg/m ³	Mass Rate g/min	Concentration mg/m ³	Mass Rate g/min	Concentration mg/m ³	Mass Rate g/min
C5-C20	1.3	0.021	1.7	0.028	0.84	0.014

VOC's C5-C20		Average		Test 1		Test 2	
	Sampling time			1109-:	1124	1125-:	1140
		Concentration mg/m ³	Mass Rate g/min	Concentration mg/m ³	Mass Rate g/min	Concentration mg/m ³	Mass Rate g/min
Detection limit ⁽¹⁾		<0.1	<0.002	<0.1	<0.002	<0.1	<0.002
Dichloromethane		0.28	0.0046	0.32	0.0052	0.24	0.004
Residuals as Toluene		0.99	0.016	1.4	0.023	0.6	0.01

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,11-Trichloroethane, 1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylexane, 2,3-Dimethylpentane, 1Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, Toluene, 1,12-Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, Methylcyclohexane, Methyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,12,2-Tetrachloroethane, Isopropylbenzene, Iphae-Pinene, Propylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane

2.2 Roto Moulding Oven Exhaust Stack (East)

Date	2/05/2024		Client	Smartstream Technology	
Report	R017025		Stack ID	Roto Moulding Oven Stack East	
Licence No.			Location	Cardup	
Ektimo Staff	Brock Zimoch, Tim Blankley		State	WA	
Process Conditions	Please refer to client records.				240424
Stack Parameters					
Moisture content, %v	/v	3.5			
Gas molecular weigh	it, g/g mole	28.7 (wet)		29.1 (dry)	
Gas density at STP, k	g/m ³	1.28 (wet)		1.30 (dry)	
Gas density at discha	arge conditions, kg/m³	0.77			
Gas Flow Parameters	5				
Temperature, °C		179			
Velocity at sampling	plane, m/s	15			
Volumetric flow rate,	actual, m³/min	63			
Volumetric flow rate	(wet STP), m³/min	38			
Volumetric flow rate	(dry STP), m³/min	37			
Mass flow rate (wet	basis), kg/h	2900			
Gas Analyser Results			Ave	rage	
	Samplingtime		0949	- 1023	
Combustion Gases			Concentration mg/m ³	Mass Rate g/min	
Nitrogen oxides (as f	NO ₂)		15	0.55	
Sulfur dioxide			<6	<0.2	
Carbon monoxide			6.6	0.24	
			Concentration %v/v		
Carbon dioxide			1.3		
Oxygen			18.7		

Aldehydes	Average		Test 1		Test 2	
Sampling time			0955-:	1004	1004-:	1023
	Concentration mg/m ³	Mass Rate g/min	Concentration mg/m ³	Mass Rate g/min	Concentration mg/m ³	Mass Rate g/min
Formaldehyde	0.42	0.015	0.57	0.021	0.28	0.01
Acetaldehyde	0.17	0.006	0.19	0.0068	0.14	0.0053
Acetone	4.4	0.16	7.2	0.26	1.6	0.057
Acrolein	<0.04	< 0.001	<0.05	<0.002	<0.02	<0.0009
Propionaldehyde	<0.04	< 0.001	<0.05	<0.002	<0.02	<0.0009
2-Butanone (MEK)	<0.04	<0.001	<0.05	<0.002	<0.02	<0.0009
Butrylaldehyde	<0.04	< 0.001	<0.05	<0.002	<0.02	<0.0009
Valeraldehyde	<0.04	< 0.001	<0.05	<0.002	<0.02	<0.0009
Hexaldehyde	<0.04	< 0.001	<0.05	<0.002	<0.02	<0.0009

Date	2/05/2024	Client	Smartstream	Technology	
Report	R017025	Stack ID	Roto Mouldi	ng Oven Stack East	
Licence No.		Locatior	Cardup		
Ektimo Staff	Brock Zimoch, Tim Blankley	State	WA		
Process Conditions	Please refer to client records.				240424

Odour	Avera	age	lest 1		Test	: 2
Sampling time			1012 -	1017	1017 -	1022
		Odourant		Odourant		Odourant
	Concentration	Flow Rate	Concentration	Flow Rate	Concentration	Flow Rate
	ou	ou.m³/min	ou	ou.m³/min	ou	ou.m³/min
Results	570	22000	570	22000	570	22000
Lower uncertainty limit	470		430		430	
Upper uncertainty limit	700		760		760	
Analysis date & time			03/05/24,0	900-0930	03/05/24, 09	900-0930
Holding time			23 hc	urs	23 ho	urs
Dilution factor			1		1	
Bag material			Nalop	han	Nalop	han
Butanol threshold (ppb)	56	6				
Laboratory temp (\mathfrak{C})	23	3				
Last calibration date	March	2024				

Total Speciated VOCs Sampling time	Avera	age	Test 0955-1		Test 1004-1	
	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min	Concentration mg/m³	Mass Rate g/min
C5-C20	6.3	0.23	8.2	0.3	4.3	0.16

VOC's C5-C20	Average		Test 1		Test 2	
Sampling time			0955-1004		1004-1012	
	Concentration mg/m ³	Mass Rate g/min	Concentration mg/m ³	Mass Rate g/min	Concentration mg/m ³	Mass Rate g/min
Detection limit ⁽¹⁾	<0.3	<0.009	<0.3	<0.009	<0.3	<0.009
Dichloromethane	1.3	0.046	1.5	0.055	1	0.036
Residuals as Toluene	5	0.18	6.7	0.24	3.3	0.12

(1) Unless otherwise reported, the following target compounds were found to be below detection:

Ethanol, Acetone, Isopropanol, Pentane, 1,1-Dichloroethene, Acrylonitrile, trans-1,2-Dichloroethene, Methyl ethyl ketone, n-Hexane, cis-1,2-Dichloroethene, Ethyl acetate, Chloroform, 1,11-Trichloroethane, 1,2-Dichloroethane, Cyclohexane, Benzene, Carbon tetrachloride, Butanol, Isopropyl acetate, 2-Methylexane, 2,3-Dimethylpentane, 1Methoxy-2-propanol, 3-Methylhexane, Heptane, Trichloroethylene, Ethyl acrylate, Methyl methacrylate, Propyl acetate, Methylcyclohexane, Methyl Isobutyl Ketone, Toluene, 1,12-Trichloroethane, 2-Hexanone, Octane, Tetrachloroethene, Butyl acetate, Chlorobenzene, Ethylbenzene, Methylcyclohexane, Methyl acetate, Styrene, o-Xylene, Butyl acrylate, Nonane, 2-Butoxyethanol, Cellosolve acetate, 1,12,2-Tetrachloroethane, Isopropylbenzene, Iphae-Pinene, Propylbenzene, 1,2,4-Trimethylbenzene, Decane, 3-Carene, 1,2,3-Trimethylbenzene, D-Limonene, Undecane, Dodecane, Tridecane

3 Sample Plane Compliance

3.1 Roto Moulding Oven Exhaust Stack (West)

Sampling Plane Details	
Sampling plane dimensions	358 mm
Sampling plane area	0.101 m²
Sampling port size, number & depth	1" BSP (x2), 12 mm
Duct orientation & shape	Vertical Circular
Downstream disturbance	Exit 5.4 D
Upstream disturbance	Centrifugal fan 3.5 D
No. traverses & points sampled	2 12
Sample plane conformance to AS 4323.1	Conforming but non-ideal
Downstream disturbance Upstream disturbance No. traverses & points sampled	Exit 5.4 D Centrifugal fan 3.5 D 2 12

The sampling plane is deemed to be non-ideal due to the following reasons: The sampling plane is too near to the upstream disturbance but is greater than or equal to 2D

3.2 Roto Moulding Oven Exhaust Stack (East)

Sampling Plane Details	
Sampling plane dimensions	300 mm
Sampling plane area	0.0707 m²
Sampling port size, number & depth	1" BSP (x1), 2 mm
Duct orientation & shape	Vertical Circular
Downstream disturbance	Exit >2 D
Upstream disturbance	Centrifugal fan >6 D
No. traverses & points sampled	14
Sample plane conformance to AS 4323.1	Non-conforming
Comments	
The number of traverses sampled is less than th	e requirement
The sampling plane is deemed to be non-conforming	due to the following reasons:
The stack or duct does not have the required nur	nber of access holes (ports)

4 Plant Operating Conditions

See Smartstream Technology records for complete process conditions.

5 Test Methods

All sampling and analysis was performed by Ektimo unless otherwise specified. Specific details of the methods are available upon request.

				NATA accredited	
Parameter	Sampling method	Analysis method	Uncertainty*	Sampling	Analysis
Sampling points - Selection	AS 4323.1	NA	NA	√	NA
Flow rate, temperature & velocity	USEPA Method 2	USEPA Method 2	8%, 2%, 7%	NA	\checkmark
Carbon dioxide & oxygen	USEPA Method 3A	USEPA Method 3A	13%	✓	✓
Carbon monoxide	USEPA Method 10	USEPA Method 10	12%	✓	✓
Nitrogen oxides	USEPA Method 7E	USEPA Method 7E	12%	✓	✓
Sulfur dioxide	USEPA Method 6C	USEPA Method 6C	12%	✓	✓
Aldehydes & ketones	Ektimo 330	Ektimo 330	16%	✓	✓†
Speciated volatile organic compounds	Ektimo 344	Ektimo 344	19%	✓	✓†
Odour	AS 4323.3	AS 4323.3	refer to results	\checkmark	✓¥
					170424

* Uncertainties cited in this table are estimated using typical values and are calculated at the 95% confidence level (coverage factor = 2).

⁴ Odour analysis conducted at the Ektimo WA laboratory by forced choice olfactometry. Results were reported to Ektimo on:

2 May 2024 in report WO-00357.

3 May 2024 in report WO-00359.

⁺ Analysis performed by Ektimo. Results were reported to Ektimo on: 10 May 2024 in report LV-005737.

16 May 2024 in report LV-005773.

6 Quality Assurance/Quality Control Information

Ektimo is accredited by the National Association of Testing Authorities (NATA) for the sampling and analysis of air pollutants from industrial sources. Unless otherwise stated test methods used are accredited with the National Association of Testing Authorities. For full details, search for Ektimo at NATA's website www.nata.com.au.

Ektimo is accredited by NATA to ISO/IEC 17025 - Testing. ISO/IEC 17025 - Testing requires that a laboratory have adequate equipment to perform the testing, as well as laboratory personnel with the competence to perform the testing. This quality assurance system is administered and maintained by the Quality Director.

NATA is a member of APAC (Asia Pacific Accreditation Co-operation) and of ILAC (International Laboratory Accreditation Co-operation). Through mutual recognition arrangements with these organisations, NATA accreditation is recognised worldwide.

Unless specifically noted, all samples were collected and handled in accordance with Ektimo's QA/QC standards.

7 Definitions

The following symbols and abbreviations may be used in this test report:

% v/v	Volume to volume ratio
~	Approximately
<	Less than
>	Greater than
2	Greater than or equal to
АРНА	American Public Health Association, Standard Methods for the Examination of Water and Waste Water
AS	Australian Standard
BaP-TEQ	Benzo(a)pyrene toxic equivalents
BSP	British standard pipe
CEM/CEMS	Continuous emission monitoring/Continuous emission monitoring system
CTM	Conditional test method
D	Duct diameter or equivalent duct diameter for rectangular ducts
D ₅₀	'Cut size' of a cyclone is defined as the particle diameter at which the cyclone achieves a 50% collection efficiency i.e. half of the particles are retained by the cyclone and half pass through it. The D_{50} method simplifies the capture efficiency
	distribution by assuming that a given cyclone stage captures all of the particles with a diameter equal to or greater than the D_{50} of that cyclone and less than the D_{50} of the preceding cyclone.
DECC	Department of Environment & Climate Change (NSW)
Disturbance	A flow obstruction or instability in the direction of the flow which may impede accurate flow determination. This includes centrifugal fans, axial fans, partially closed or closed dampers, louvres, bends, connections, junctions, direction
	changes or changes in pipe diameter.
DWER	Department of Water and Environmental Regulation (WA)
DEHP	Department of Environment and Heritage Protection (QLD)
EPA	Environment Protection Authority
FTIR	Fourier transform infra-red
ISC	Intersociety Committee, Methods of Air Sampling and Analysis
ISO ITE	International Organisation for Standardisation Individual threshold estimate
I-TEQ	International toxic equivalents
Lower bound	When an analyte is not present above the detection limit, the result is assumed to be equal to zero.
Medium bound	When an analyte is not present above the detection limit, the result is assumed to be equal to half of the detection limit.
NA	Not applicable
NATA	National Association of Testing Authorities
NIOSH	National Institute of Occupational Safety and Health
NT	Not tested or results not required
OM	Other approved method
OU	Odour unit. One OU is that concentration of odorant(s) at standard conditions that elicits a physiological response from a panel equivalent to that elicited by one Reference Odour Mass (ROM), evaporated in one cubic metre of neutral gas at standard conditions.
PM10	Particulate matter having an equivalent aerodynamic diameter less than or equal to 10 microns (μm).
PM _{2.5}	Particulate matter having an equivalent derodynamic diameter less than or equal to 2.5 microns (μ m).
PSA	Particle size analysis. PSA provides a distribution of geometric diameters, for a given sample, determined using laser diffraction.
RATA	Relative accuracy test audit
Semi-quantified VOCs	Unknown VOCs (those for which an analytical standard is not available), are identified by matching the mass spectrum of the chromatographic peak to the NIST Standard Reference Database (version 14.0), with a match quality exceeding 70%. An estimated concentration is determined by matching the area of the peak with the nearest suitable compound in the
	analytical calibration standard mixture.
STP	Standard temperature and pressure. Gas volumes and concentrations are expressed on a dry basis at 0 °C, at discharge oxygen concentration and an absolute pressure of 101.325 kPa.
TM	Test method
тос	Total organic carbon. This is the sum of all compounds of carbon which contain at least one carbon-to-carbon bond, plus methane and its derivatives.
USEPA	United States Environmental Protection Agency
VDI	Verein Deutscher Ingenieure (Association of German Engineers)
Velocity difference Vic EPA	The percentage difference between the average of initial flows and after flows. Victorian Environment Protection Authority
VOC	Volatile organic compound. A carbon-based chemical compound with a vapour pressure of at least 0.010 kPa at 25°C or
	having a corresponding volatility under the given conditions of use. VOCs may contain oxygen, nitrogen and other elements. VOCs do not include carbon monoxide, carbon dioxide, carbonic acid, metallic carbides and carbonate salts.
WHO05-TEQ XRD	World Health Organisation toxic equivalents X-ray diffractometry
Upper bound	When an analyte is not present above the detection limit, the result is assumed to be equal to the detection limit.
95% confidence interval	Range of values that contains the true result with 95% certainty. This means there is a 5% risk that the true result is outside this range.

Item 10.1.8 - Attachment 2

Ektimo

ektimo.com.au 1300 364 005

MELBOURNE (Head Office) 26 Redland Drive

Mitcham VIC 3132 AUSTRALIA

SYDNEY

6/78 Reserve Road Artarmon NSW 2064 AUSTRALIA

WOLLONGONG

1/251 Princes Highway Unanderra NSW 2526 AUSTRALIA

PERTH

52 Cooper Road Cockburn Central WA 6164 AUSTRALIA

BRISBANE

3/109 Riverside Place Morningside QLD 4170 AUSTRALIA